Measuring Low X-ray Surface Brightness at High Redshift

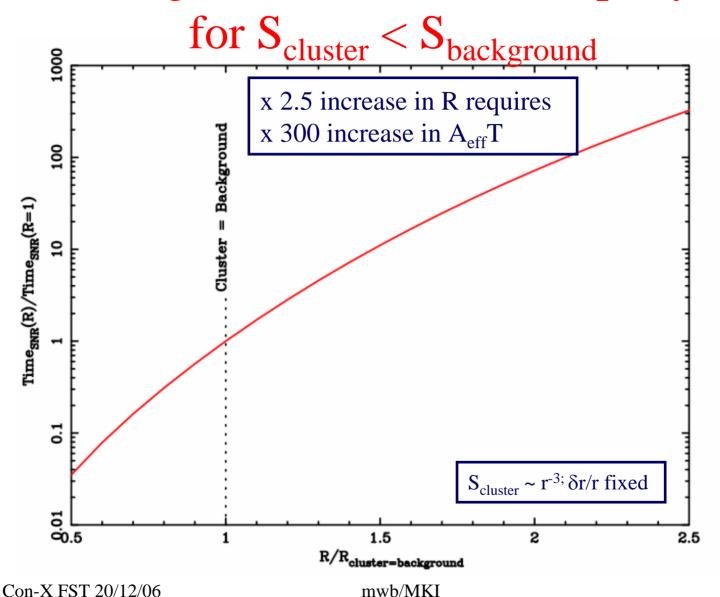
Presented by: C. Kilbourne

Slides by: M. Bautz

(with a few extra on the XRS background added)

- Cluster photometry to the virial radius
- Surface brightness sensitivity limits
- Implications for mission requirements

Constellation-X and Clusters

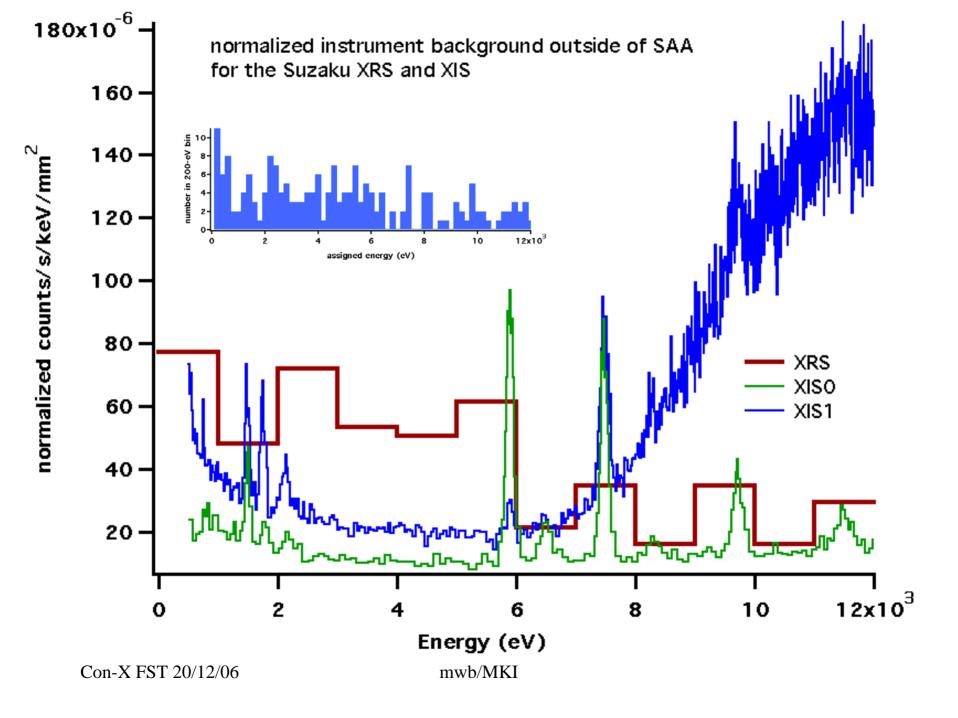

- Clusters are more complex than we'd like:
 Non-gravitational physics is important (from scaling laws & their evolution)
- We need to understand clusters at the epoch at which we want to use them $(z \sim 1)$ to study dark energy
- Con-X must allow us (in conjunction with lensing and SZ data) to model these objects as completely as possible.

Surface Brightness Limits

- Rest-frame surface brightness $\sim L/r_v^2 \sim [M_v E^2(z)]^{2/3}$
 - * From self-similarity $(E(z) = H(z)/H_0)$
 - * Non-gravitational processes will reduce this
- Typical Chandra limits at $z \sim 0.4$, $M \sim 3x10^{14} M_{sun}$
 - * Photometry to $\sim r_{300}$ (e.g., Vikhlinin)
 - * Spectroscopy (kT) to $\sim r_{2500}$ (e.g. Allen)
- Goals: Spectroscopy to $\sim r_{200}$ at z > 1, $M < 10^{14} M_{sun}$
- Requires surface brightness limit reduction by factor > 65!

 Is this possible?

Integration Time Rises Rapidly


(Detector Limited)

Surface Brightness Sensitivity

 S_{min} (c s⁻¹ cm⁻² ster⁻¹) ~ B_{det} (c s⁻¹ cm⁻²) F^2/A_{eff}

Mission	F (m)	A _{eff} (m ²)	B _{det} (1 keV) (c s ⁻¹ cm ⁻² keV ⁻¹)	F^2/A_{eff}	S _{lim} ** (rel. to CXO)
CXO	10	0.07	10-2	1	1
XMM (Epic PN)	7.5	0.15	2 x 10 ⁻²	0.26	0.52
Suzaku XIS (1 sensor)	4.75	0.04	1.2 x 10 ⁻³	0.39	0.05
Con-X (classic, 1 module)	10	0.375	1.5 x 10 ⁻² (scaled from XRS)	0.19	0.29
XEUS	50	6	1.5 x 10 ⁻² (?)	0.29	0.45??

** Source = Particle Background (Ignores Galactic Foreground!)

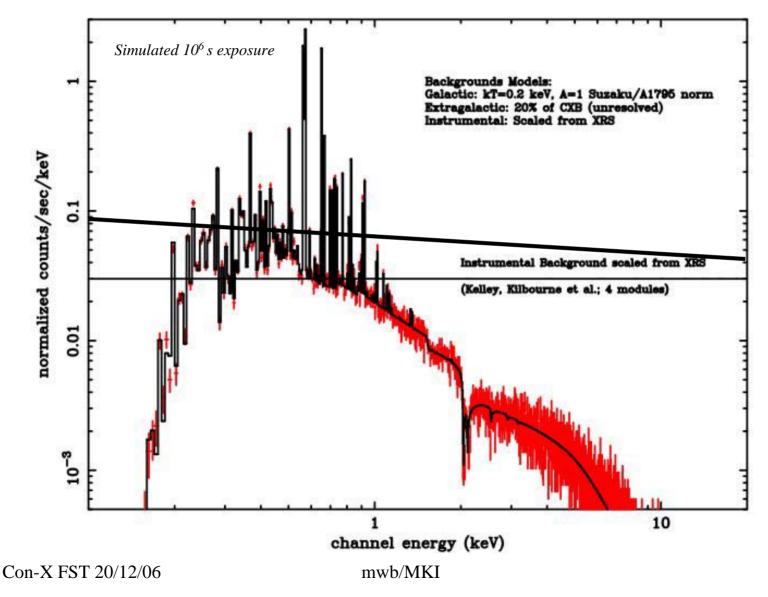
(Detector Limited)

Surface Brightness Sensitivity

 $S_{min} \ (\text{c s--1 cm--2 ster--1}) \ \boldsymbol{\sim} \ B_{det} \ (\text{c s--1 cm--2}) \ F^2 / A_{eff}$

Mission	F	A _{eff}	B _{det} (1 keV)	F^2/A_{eff}	S_{lim}^{**} (ph s ⁻¹ cm ⁻² keV ⁻¹)
	(m)	(m^2)	(c s ⁻¹ cm ⁻² keV ⁻¹)	(rel. to CXO)	(pirs cin kev)
CXO	10	0.07	10-2	1	14
XMM (Epic PN)	7.5	0.15	2 x 10 ⁻²	0.26	7.4
Suzaku (1 XIS)	4.75	0.04	1.2 x 10 ⁻³	0.39	0.7
Con-X (classic, 1 module)	10	0.375	1.5 x 10 ⁻² (?)	0.19	3
XEUS	50	6	1.5 x 10 ⁻² (?)	0.29	6??

mwb/MKI


** Source = Particle Background (Ignores Galactic Foreground!)

Rates over Con-X FOV

- 4, 32x32 arrays = 2.56 cm²
- Using 0.015 c/s/keV/cm² (3x0.005), get 0.038 c/s/keV. But XRS background wasn't flat. Use 0.007 to characterize soft part of band. Increase LEO-to-L2 scaling to 5. Then get 0.09 c/s/keV.

Constellation-X Backgrounds

2.5 x 2.5 arcmin FOV

Summary

- Constellation-X must validate physical models of z~1 clusters
- This will entail spatially resolved spectroscopy to r_{vir} & surface brightness sensitivity 50x XMM's
- XRS flight data provide secure basis for Constellation-X background estimates
- Instrumental & cosmic backgrounds pose significant challenges; lower (still) instrumental background is highly desirable.